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The eject ion p r o c e s s  is desc r ibed  gas -dynamica l ly  for  the case of normal  incidence ona  su r -  
face by a flow of radiat ion.  A comple te  equation s y s t e m  is  wr i t ten  down which is  solved nu- 
mer i ca l l y .  In this situation, the s y m m e t r y  of the eject ion offers  an opportunity to e l iminate  
one of the va r i ab l e s  and makes  it poss ib le  to c a r r y  out the calculat ion over  t ime in a two-di-  
mens iona l  physical  space.  Absorpt ion  of the radia t ion energy  by the solid is taken into account 
by the introduction of a discontinuity; the ga s -dynamic  quantit ies on both sides of the discon-  
t inuity a re  re la ted  by conserva t ion  laws and, at ze ro  t ime,  by the Jouguet rule .  The gas  is 
a s sumed  to be ideal.  The r e su l t s  of the calculat ion a re  p r e s e n t e d i n t h e f o r m o f c u r v e s .  Con- 
dit ions at  the discontinuity which r ep l ace s  the region of heating adjacent  to the solid a r e  dis-  
cussed.  

F o r  p re sen t ly  exis t ing radia t ion pulse lengths,  the nature  of the p r o c e s s e s  a r i s ing  through in terac t ion  
of radiat ion with the su r face  is  de te rmined  mainly  by the value of the radia t ion flux density q, w h i c h c a n v a r y  
over  wide l imi t s  [1-4]. 

Low densi t ies  q co r r e spond  to conditions where  there  is no marked  vapor iza t ion  of the heated surface ,  
but emi s s ion  of e lec t rons  and ions occurs .  F o r  somewhat  g r e a t e r  flux densi t ies ,  d is in tegra t ion of the su r -  
face begins  and a vapor  cloud - a f la re  - appears .  If the radia t ion flux density is  not so g r ea t  that the f l a re  
is significantly ionized during the t ime of the pulse and blocks a c c e s s  of the radia t ion to the vapor ized  su r -  
face,  s epa ra t e  invest igat ion of the ga s -dynamic  and optical  p rob l ems  is p e r m i s s i b l e  fo r  such q. The d i s t r i -  
bution of density,  vapor  t empe ra tu r e ,  and degree  of condensat ion a re  de te rmined  f r o m  a solution of the p rob-  
l em of vapor  eject ion f r o m  the d is in tegra t ing  surface .  F r o m  them,  one can calcula te  the absorp t ion  and sca t -  
ter ing of radia t ion by breakdown products  and thereby  c o r r e c t  the value for  the light flux affecting the m a t e -  
r ia l  by consider ing absorp t ion  in the e jected ma te r i a l .  F o r  a constant  value of q with vapor  expansion into 
a vacuum, the c h a r a c t e r i s t i c s  of the resu l tan t  s e l f - s i m i l a r  motion [5, 6] can then be de termined.  

F o r  l a rge  radia t ion flux densi t ies  corresponding,  fo r  example,  to giant l a s e r  pulses  and produced by 
focusing a flow of these pu lses  on the sur face  of a sample ,  ionization of the f l a re  begins  to play a funda- 
menta l  role  in the eject ion p r o c e s s  because  the effect  of t he rma l  conductivity is reduced for  l a rge  q, the 
t e m p e r a t u r e  and degree  of ionization i nc rea se  leading to an inc rease  in the absorpt ion  coefficient and s c r een -  
ing of the sur face .  Nonuniformity in the eject ion of r ad ia t ion-absorb ing  p l a sma  which then occurs  is impor -  
tant  because  the expansion p roceeds  both in the di rect ion of incident radia t ion and in d i rec t ions  para l le l  to 
the sur face  of the sample  [7, 8]. 

In the genera l  case ,  the p rob l em  of radia t ion in te rac t ion  with a sur face  contains th ree  spat ia l  v a r i -  
ab les  and a t ime coordinate .  In this paper ,  no rmal  incidence of radia t ion on the s u r f a c e i s  considered,  which 
makes  it poss ib le  to e l iminate  one of the spat ia l  va r i ab les .  We se lec t  acy l ind r i ca l coord ina te  s y s t e m  r, @, 
and z, with the z axis extending f r o m  the center  of the focal spot in a di rect ion opposite to that of the r ad ia -  
t ion flow (Fig. 1). 

Because  of the s y m m e t r y  of e ject ion with r e spec t  to the z axis ,  the equations do not contain the v a r i -  
able ~ and the p rob lem is solved in a plane ~p = const.  In such a formulat ion,  one can compare  the computed 
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r e su l t s  d i r e c t l y  with expe r imen ta l  data s ince l a t e r a l  expansion of the 
f l a r e  i s  taken into cons idera t ion .  

We shal l  cons ide r  the g a s - d y n a m i c  approx imat ion  val id  in the  dense 
region of the f l a r e  with the consequence the p r o c e s s  can be de sc r ibed  
by the equation s y s t e m  

~ov + (vV)v + - ~ -  = 0. 0p at -EF + V (pv) = 0 (1) 

where  v i s  ve loci ty ,  p is  p r e s s u r e ,  p is  densi ty,  e = p / [ p ( x - 1 ) ]  + ~, and x 
is  the Po i s s on  ad iaba t  constant .  By ~ is  meant  the sum of the heat of 
fusion, the heat  of vapor iza t ion ,  and the heat to get  to the vapor iza t ion  
t e m p e r a t u r e .  

To de t e rmine  the t e m p e r a t u r e ,  it  is  a s s um e d  there  ex is t s  an equa-  
t ion of s ta te  

p = n~)T I ~ (2) 

where  R is  the u n i v e r s a l  ga s  constant,  # i s  the m o l e c u l a r  weight, and T 
i s  t e m p e r a t u r e .  

We a s sume  the motion occur s  in the region a b e d e d ' c ' b '  (Fig. 1) on 
the boundar ies  of which the following condit ions a r e  sa t i s f ied .  

1. On b ' ab  o r  bl 'bl,  i .e . ,  on a discont inui ty,  the following re la t ions  �9 
a r e  valid: 

Pt (D - -  ~h) = p , D ,  p~ - -  P0 = Per* D 
- - P o  O (e 1 - -  e e + t'l ~ / 2) + p te t  = q (3 )  

Here,  D i s  the ve loc i ty  of the vapor i za t ion  wave. These  re la t ions  
a r e  insuff icient  for  the de te rmina t ion  of Pl, Pl, vl, D, and P0 by means  of 
the quant i t ies  Po and v 0 = 0 to the left  of the d iscont inui ty  b ' ab .  I t  i s  t h e r e -  

fore  n e c e s s a r y  to a s s ign  an in i t i a l  t e m p e r a t u r e  T O in the f l a re  and to use the equation of s ta te  (2). In addi-  
tion, i t  i s  a s s u m e d  that at  t=0  the Jouguet r e l a t ion  

v , -  ] ' f x p d p l  = D (4) 

which is subsequent ly  not u sed  (for t > 0) i s  sa t i s f ied ,  and ex t rapola t ion  of the ve loc i ty  v f rom the f l a r e  to an 
a r b i t r a r y  discont inui ty  i s  made  fo r  the numer i ca l  solut ion of Eq. (1). 

Genera l ly  speaking,  the quant i t ies  ~t and # a r e  va r i a b l e s ,  but the t e m p e r a t u r e  does not va ry  g r ea t l y  
nea r  the su r face  of the sol id  m a t e r i a l  because  "cold" m a t e r i a l  flows in f rom the discont inui ty  and the v a r i a -  
t ion of x and # cannot be taken into account.  T e m p e r a t u r e  at  a d iscont inui ty  at  subsequent  t imes  wil l  be a s -  
sumed to be equal to the t e m p e r a t u r e  of the neighboring l aye r .  

2. The s u r f a c e s  bc, cd, d ' c ' ,  and e 'b '  a r e  smooth, sol id  wal ls .  

3. On ded ' ,  the p r e s s u r e  i s  zero ,  which i s  ach ieved  by l i n e a r  ex t rapo la t ion  of veloci ty  and p r e s s u r e  
into a vacuum. Densi ty  i s  de t e rmined  f rom p r e s s u r e  and the t e m p e r a t u r e  of the neighboring l aye r .  

The s y s t e m  (2)- (4) of boundary condit ions has a unique r e a l  solution 

~, = [ ~ /  . :/2 + V-~ + ~ : -  :12 - V O  - (2 - , , )  V ~ I 3 1 I V ~ ,  - , 

whe re  

c~ = 2 {q/Po + ] /I 'o  3 (z - -  1) / •  (2 - - •  [(2 - -  ~) (• - -  I)/9{r - -  i - -  3 •  - -  ~ )~] /3}  

-- To (4 -- • (• + i)/3• (• -- 1), Q = (~/3) 3 + (:/2) ~ 

n = 72 1 - -  " V ' - ~ o / ( ~  - -  1 ) ,  P1 = p o D / ( D - -  Yl) 
p l  ~ pTo. po - -  pJ -{- pxvl Wu[ 'o / (u  - -  i) 

(5) 
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w h e r e  

F o r  a n a l y s i s  of the b o u n d a r y  cond i t i ons ,  i t  i s  conven ien t  to t r a n s f o r m  Eqs .  (2)-(4) s l i g h t l y  

P l (D- -  vl) = po D , xpa = poviD 

--poD(s t -  e 0 + v l  z/2) + p l y 1 =  q, v 1 -  Y x p l / p ~ . = D  (6) 

x z t - -  Po/pl 

H e r e ,  Pl, Or, vl,  and  D a r e  unknowns,  and  x, P0, v0 a r e  g iven .  A s  the so lu t i on  of the s y s t e m  (2)-(4) in 
the  f o r m  (5) shows ,  the  quan t i ty  x i s  w e a k l y  dependen t  on q fo r  u = 1.2 and v a r i e s  f r o m  x=  0.6 f o r  q = 2 �9 107 
W / e r a  2 to x =  0.56 fo r  q= 2-  10 ~ W / e r a  2. F o r  an  x d e t e r m i n e d  f r o m  the so lu t i on  of the s y s t e m  (2)-(4), the so lu -  
t i o n s  of (6) and (2)-(4) a g r e e ,  and one can  l i m i t  o n e s e l f  to  an  i n v e s t i g a t i o n  of the s y s t e m  (6) fo r  a g iven  x.  

S y s t e m  (6) has  the  un ique  r e a l  so lu t ion  

2• llV3 

w h e r e  F i s  s o m e  func t ion  of the  a r g u m e n t s  g iven ,  and 

p l = p 0 ( i + z / •  P t =  ~l~O0(x+• D = v l ( t + ~ / x )  (8) 

F r o m  the equa t i ons  f o r  Pl and 131 and f r o m  the de f i n i t i on  of x, i t  fo l lows  t h a t - u  < x < 1. The  func t ion  F 

v a r i e s  m o n o t o n i c a l l y  f r o m  0 to ~ - a s  q i n c r e a s e s  f r o m  0 to  ~ .  F o r  e x a m p l e ,  when q ~  101~ W / c m  ~, F =1; 
when q= 1012 W / c m  2, F can  be c o n s i d e r e d  independen t  of both  q and ~ .  Th i s  m e a n s  tha t  in  the  r e g i o n o f l a r g e  
r a d i a t i o n  f lux  d e n s i t i e s ,  the  r a d i a t i o n  e n e r g y  a b s o r b e d  in  a d i s c o n t i n u i t y  goes  e n t i r e l y  into k ine t i c  e n e r g y  of  
the hea t ed  l a y e r .  

The func t ions  vl ,  Pt, Pl, and D ob ta ined  f r o m  the so lu t ion  of the b o u n d a r y  cond i t i ons  (3)-{4) a r e  shown 
a s  c u r v e s  in  F ig .  2. A s h o c k  wave  can  be p r o p a g a t e d  in the  co ld  m a t e r i a l  a h e a d  of the d i s c o n t i n u i t y  [1, 9]. 
To d e t e r m i n e  the  cond i t ions  f o r  i t s  e x i s t e n c e ,  one can  u s e  r e l a t i o n s  b e t w e e n  the sound v e l o c i t i e s  e on both  
s i d e s  of  the d i s c o n t i n u i t y  and the v e l o c i t y  of the  d i s c o n t i n u i t y  i t s e l f .  

We have 

cl ~=•  co ~= ~Po/P0 

Us ing  t h e s e  r e l a t i o n s ,  the  e x p r e s s i o n  of  Pt t h rough  P0 in Eq.  (8), and  the de f in i t i on  of x, we f ind t h e r e  
a r e  two d i f f e r e n t  m o d e s  of flow, in one of which  p r o p a g a t i o n  of the shock  wave  ahead  of the  " v a p o r i z a t i o n  
wave"  i s  p o s s i b l e .  In  c o r r e s p o n d e n c e  wi th  t h i s ,  t h r e e  r e g i o n s  A, B, and C can  be  d i s t i n g u i s h e d  in F i g .  2 
such  tha t  the  cond i t ions  

I D l < v o < c l ,  I D I <  ct < c0, [D{ > c t  > to .  

a r e  s a t i s f i e d  in the r e s p e c t i v e  r e g i o n s .  

Reg ions  A and B c o r r e s p o n d  to a mode  of flow w h e r e  a shock  wave  a h e a d  of the  d i s c o n t i n u i t y  i s  p o s -  
s ib l e  - "bu rn ing , "  and in  C the shock  wave  c o i n c i d e s  wi th  the  d i s c o n t i n u i t y  - "de tona t ion . "  In r e g i o n  C, the 
shock  wave  c o i n c i d e s  wi th  b ' a b  and  t r a v e l s  a long  u n c o m p r e s s e d  m a t e r i a l ,  i . e . ,  P0 = 0, x =  1, and  tDI = m a x  IDI. 
Consequen t ly ,  only  a s ing le  poin t  w i th  m a x i m u m  de tona t ion  v e l o c i t y  i s  r e a l i z e d  in  the  e n t i r e  r e g i o n  C - the 
po in t  y .  

The eqwation system (I), rewritten in cylindrical coordinates, is solved numerically. For the assign- 

ment of initial distributions by means of conditions (2)- (4), the material is taken to be graphite. The initial 

density P0 = 2.3 g/era 3 and the dimension ab= 0.015 cm [8]. 

At zero time, the transverse velocity u =0 and the longitudinal velocity v= const. The initial distribu- 
tion of p was chosen in the form of linear functions of r and z in the region abde. 

Starting fromz = 0,the pressure falls for all r. It is constant along r for 0 -< r- r 0-< r b and decreases 
linearly for r 0- r-< r b. Such a distribution is necessary in order to start the calculation. The initial density 
is given in Eq. (2) for fixed initial temperature T O ~ 104 ~ and the already known pressure. The exact as- 
signment plays no great part because the first ionization potential of graphite, up to the temperature ofwhich 
the calculation is carried out, is sufficiently high (1.2 �9 i05 ~ and the magnitude of the flare temperature 
w i l l  be  an  o r d e r  of  m a g n i t u d e  g r e a t e r  than  T O b e f o r e  the  beg inn ing  of i n t e nse  ion iza t ion .  
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L a s e r  rad ia t ion  is incident on the sol id  su r face  of the graphi te  [8]; one can t h e r e f o r e  a s s u m e  t h a t t h e r e  
i s  no l ine abso rp t ion  fo r  the t e m p e r a t u r e s  T under  c o n s i d e r a t i o n  (T o ~ T _< 8-  104 ~ and the abso rp t i on  coe f -  
f ic ient  K is g iven by the K r a m e r s - U n s o l d  f o r m u l a  

K = 0 . 9 6 , i O - T N Z 2 T - 2 A  -8 e x p  ( A  - -  A1)  

where  N is the n m n b e r  of  a toms ,  Z is the a tomic  number ,  T is the t e m p e r a t u r e ,  A 1 = I /kT ,  I is the ionizat ion 
potent ial ,  k is the Bo l t zmann  constant ,  A=  hv/kT,  and tm is the quantum ene rgy  [10]. The ef fec ts  of ion iza-  
t ion nonequ i l ib r ium [11] a r e  not  taken  into account  in this  case .  

An impl ic i t  d i f fe rence  s c h e m e  was  u s e d  in the ca lcu la t ions  in which the t ime de r i va t i ve s  a f /S t  w e r e  t e -  
e e n+l plac d by th difference (f -fn)/At and the derivatives with respect to coordinates 8f/ay were replaced by 

§ § (i~i +]-~_i)/2Ay. An iteration method was used in the solution. 
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Such a scheme is little different from the "conversion" scheme used in [12]. Its stability was evalu- 
ated by the Neumann method. For this, all gas-dynamic quantities fi(Y, t) were represented in the form 
fi+fi'(y, t), where fi=const and f'(y, t) is a variation which is considered a small quantity of first order [13]. 
Then the difference scheme for fi'(Y, t) reduces to the form Gf'n+i(y) =f'n where G is a transformation ma- 
trix. For stability, it is necessary that the eigenvalues k of the transformation matrix G all be greater than i. 

We have 

~1~ ~ -F i r  At/  bg sin nhg >t i 

where, for  simplicity, we assume A z = A r - A y .  To obtain ~2, ~3, and ~ ,  we use the smal lness  of the quan- 
tity l=vAt /Ay,  which is no more  than 10 -z in this problem and neglect t e rms  of o rde r  i2. Then 

At 
~.~,~>~l+ilsinnAy~t, ~ . t ~ t + u ~ ( l + •  

where u is the velocity in the direct ion r, r>-Ay. The quantity 6 is proport ional  to qAt and a r i ses  because 
of heating of the gas by radiation. It is negative for  

pFAy ~ e x p  (-- Hpm/pm + imnhy) ~ t 
I n  

where the summation is ca r r i ed  out over  points along the z axis at some r; H ~ 10 -2, F ~ 200. F o r  q= 109 
W / c m  2, p ~ 5" 10 -2, pro/pro ~ 10 -3, and the stability condition is satisfied. 

Fo r  small  q, the quantity A is small  because q appears  in it as a multiplying factor .  Thus the eigen- 
values of the inverse of the t ransformat ion  mat r ix  are  g rea te r  than one and the scheme is stable. 

Results of the calculations are shown in Figs. 3-i0. In solving the boundary equations (2)-(4), it was 
observed that for a change in q from qmin=2 - 107 W/cm 2 to 2- 109 W/cm 2 (in dimensionless units, from 0.2 
to 20), the dimensionless velocity v i varied from 0.2881 to 0.2786, i.e., practically remained constant. There 
was also practically no time dependence for v i for variation of q within the limits mentioned and times of 
the order of 10 -8 see. This made it possible to limit examples of the time dependence of v to q=5 "108 W/ 
cm 2 only (curve 1 in Fig. 3 refers to the time t = 4 nsec, curve 2 to the time t = 8 nsec). 

The boundary values Pi and Pl are  pract ical ly  proport ional  to the quantity q and in Figs .  4 and5, curves  
are  given which for  convenience use the same scaling of the quantities p and p (p and p are  multiplied by the 
rat io of the minimum q considered, qmin, to the q corresponding to a given p or  p), i.e., p . =  (qmin/q)P, P*= 
(qmin/q)P- The curves  1 cor respond to q=5,  t=4  nsec, the curves  2 to q=5,  t=8  nsee, and the curves  3 to 
q=10, t=4  nsec; the dashed line indicates the initial p r e s s u r e  distribution. The drop in the values of p and 
p at the point z = 0 is somewhat ar t i f ic ia l  and resul ts  f rom a decrease  in radiation flux density at the bound- 
ary with the solid because of an increase of radiation absorption in the flare with time. 

Figure 6 shows the flare temperature distribution along z for r=0 and q=109 W/cm 2 4 nsee after the 
beginning of radiation effects. Curve 1 was obtained for i0 initial points along z, and curve 2 for 16 points. 
The other parameters remained unchanged. Rapid heating of the leading edge of the flare is observed - a 
"spike" - which leads to the appearance of shock waves. The dashed line shows the temperature for super- 
position of the leading edges in these two cases. Figures 7 and 8 show the pressure distribution and lateral 
velocity u along the coordinate r. The dashed line indicates the initial pressure, the initial velocity u is 
zero, and the parameters q and t are the same as in Figs. 4 and 5. Figure 9 shows the variation in temper- 
ature of the leading edge of the flare as a function of time for q=3.6 �9 109 W/cm 2. 

The variation of the parameter (-x) (solid lines) and of the quantity j =~ (dashed lines) from Eq. (4), 
which is now calculated from vi, Pl, Pl, and D, is shown in Fig. i0 for three values of q (i - q--2, 2 - q=10, 
3 - q= 20). The quantity j decreases with time which leads to subsonic outflow from the discontinuity for an 
initial motion (t= 0) close to sonic (]D] << v, and their difference at t= 0 equals the velocity of sound). An in- 
crease in x leads to a change in boundary values in accordance with the diagram in Fig. 2. 

Viscosity was not included in the calculational scheme; therefore it was adjusted to produce smooth 
solutions only and the calculations were carried forward to the time of appearance of shock waves, which 
depended on the value of the initial temperature T o . Their formation resulted from the spike and from the 
lack of equilbrium observed during the calculation in the distribution of radiation flux density along the co- 
ordinate r at the boundary of the solid. 
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It should be noted that the appearance of shock waves, nonequilibrium conditions, and other phenomena 
which accompany the absorption of intense radiation greatly complicate the investigation of the problem. It 
therefore appears reasonable to solve the problem of prolonged ejection by an approximation of the absorp- 
tion coefficient with the power function which is valid for  multiple ionization. In such a formulation, one can 
also take into account fast phenomena like a spike as well as nonequilibrium conditions of processes  associ-  
ated with radiation absorption, and compare the results obtained with seE-similar i ty  solutions [6, 14, 15] 
and with numerical solutions [16]. 

The authors are grateful to O. S. Ryzhov for interest  in the work and for fruitful discussions and to 
I. V. Nemchinov for valuable advice and observations during the course of the work. 
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