NUMERICAL STUDY OF EJECTION OF MATERIAL
FROM A SOLID SURFACE BY INTENSE RADIATION
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The ejection process is described gas-dynamically for the case of normal incidence ona sur-
face by a flow of radiation. A complete equation system is written down which is solved nu-
merically. In this situation, the symmetry of the ejection offers an opportunity to eliminate
one of the variables and makes it possible to carry out the calculation over time ina two-di-
mensional physical space. Absorption of the radiation energy by the solid is taken into account
by the introduction of a discontinuity; the gas-dynamic quantities on both sides of the discon-
tinuity are related by conservation laws and, at zero time, by the Jouguet rule, The gas is
assumed to be ideal. The results of the calculation are presentedinthe form of curves. Con-
ditions at the discontinuity which replaces the region of heating adjacent to the solid are dis-
cussed.

For presently existing radiation pulse lengths, the nature of the processes arising through interaction
of radiation with the surface is determined mainly by the value of the radiation flux density g, whichcanvary
over wide limits [1-4].

Low densities q correspond to conditions where there is no marked vaporization of the heated surface,
but emission of electrons and ions occurs. For somewhat greater flux densities, disintegration of the sur-
face begins and a vapor cloud — a flare — appears. If the radiation flux density is not so great that the flare
is significantly ionized during the time of the pulse and blocks access of the radiation to the vaporized sur-
face, separate investigation of the gas-dynamic and optical problems is permissible for such q. The distri-
bution of density, vapor temperature, and degree of condensation are determined from a solution of the prob-
lem of vapor ejection from the disintegrating surface. From them, one can calculate the absorption and scat-
tering of radiation by breakdown products and thereby correct the value for the light flux affecting the mate-
rial by considering absorption in the ejected material. For a constant value of q with vapor expansion into
a vacuum, the characteristics of the resultant self-similar motion [5, 6] can then be determined.

For large radiation flux densities corresponding, for example, to giant laser pulses and produced by
focusing a flow of these pulses on the surface of a sample, ionization of the flare begins to play a funda-
mental role in the ejection process because the effect of thermal conductivity is reduced for large q, the
temperature and degree of ionization increase leading to an increasge in the absorption coefficient and screen~
ing of the surface. Nonuniformity in the ejection of radiation-absorbing plasma which then occurs is impor-
tant because the expansion proceeds both in the direction of incident radiation and in directions parallel to
the surface of the sample [7, 8]. ‘

In the general case, the problem of radiation interaction with a surface contains three spatial vari-
ables and a time coordinate. In this paper, normal incidence of radiation on the surfaceis considered, which
makes it possible to eliminate one of the spatial variables. We select a cylindrical coordinate system r, ¢,
and z, with the z axis extending from the center of the focal spot in a direction opposite to that of the radia-
tion flow (Fig. 1).

Because of the symmetry of ejection with respect to the z axis, the equations do not contain the vari-
able ¢ and the problem is solved in a plane ¢ =const. In such a formulation, one can compare the computed
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results directly with experimental data since lateral expansion of the
flare is taken into consideration.

y We shall consider the gas-dynamic approximation validinthe dense
I region of the flare with the consequence the process can be described
4 y e by the equation system
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where v is velocity, p is pressure, p is density, e=p/[pn—1)]+Q, and
is the Poisson adiabat constant, By Q is meant the sum of the heat of

Fig. 1 fusion, the heat of vaporization, and the heat to get to the vaporization
temperature.

; A To determine the temperature, it is assumed there exists an equa-
tion of state

p=ReT/p @)

where R is the universal gas constant, y is the molecular weight, and T
is temperature.

We assume the motion occurs in the region abeded'c'db' (Fig. 1) on
the boundaries of which the following conditions are satisfied.

l
I
: 1. On b'ab or byby, i.e., on a discontinuity, the following relations '
: are valid:
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Here, D is the velocity of the vaporization wave. These relations
are insufficient for the determination of py, py, vi, D, and p, by means of
the quantities py and vy=0 to the left of the discontinuity btab. It is there-
fore necessary to assign an initial temperature T, in the flare and to use the equation of state (2). In addi-
tion, it is assumed that at t=0 the Jouguet relation

Fig. 2
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which is subsequently not used (for t>0) is satisfied, and extrapolation of the velocity v from the flare to an
arbitrary discontinuity is made for the numerical solution of Eq. (1).

Generally speaking, the quantities » and u are variables, but the temperature does not vary greatly
near the surface of the solid material because "cold" material flows in from the discontinuity and the varia-
tion of » and p cannot be taken into account, Temperature at a discontinuity at subsequent times will be as-
sumed to be equal to the temperature of the neighboring layer.

2. The surfaces be, cd, d'e!, and c'b' are smooth, solid walls.

3. On ded', the pressure is zero, which is achieved by linear extrapolation of velocity and pressure
into a vacuum. Density is determined from pressure and the temperature of the neighboring layer.

The system (2)- @) of boundary conditions has a unique real solution
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where

@ =2{gfpo+ Vo (n— 1)/ (2 —%)?[(2 — ) 0 — 1)/% — 1 — 3u/(2 — %)]/3} 5)
B=To (& —u%) ( + 1)/3% (x — 1), Q = (B3P + (2/2)?
D =v1— Vrloj(x — 1), p1 = poDH(D— v1).
p1==pTo, po = p1 + pro1 VuloJ(n — 1)
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For analysis of the boundary conditions, it is convenient to transform Egs. (2)-(4) slightly
pL (D — ) = pD, ap, = pynD
—poD (& — 8+ v/ 2) + Py =¢q v — Vaplp =D 6)
where
z=1-— p/p

Here, py, pis Vi, and D are unknowns, and X, pg, Vo are given. As the solution of the system (2)-(4) in
the form (5) shows, the quantity x is weakly dependent on q for »=1.2 and varies from x=0.6 for g=2-107
W/cm? to x=0.56 for q=2-10° W/cm?. For an x determined from the solution of the system (2)-(4), the solu-
tions of (6) and (2)-(4) agree, and one can limit oneself to an investigation of the system (6) for a given x.

System (6) has the unique real solution

2%

vy =2z {q/ [po (a 2 42 — ,) (x+ y)]}’isp (R, po, ¢, 2, %) (7}

where F is some function of the arguments given, and
or=po(l /), pr=vlo(z+wn/22 D=v, {1+ u/a) (8)
From the equations for p; and p; and from the definition of x, it follows that —~4 <x<1. The function F

varies monotonically from 0 to ¥2 as g increases from 0 to . For example, when g~ 101 W/cm?, F=1;
when q=10!2 W/em?, F can be considered independent of both q and Q. This means that in the region oflarge
radiation flux densities, the radiation energy absorbed in a discontinuity goes entirely into kinetic energy of
the heated layer.

The functions vy, py, p;, and D obtained from the solution of the boundary conditions 3)-{4) are shown
as curves in Fig. 2. A shock wave can be propagated in the cold material ahead of the discontinuity [1, 9].
To determine the conditions for its existence, one can use relations between the sound velocities ¢ on both
sides of the discontinuity and the velocity of the discontinuity itself.

We have
2 = UPy / Py co? = %Po / 0o

Using these relations, the expression of p; through p, in Eq. (8), and the definition of %, we find there
are two different modes of flow, in one of which propagation of the shock wave ahead of the "vaporization
wave" ig possible. In correspondence with this, three regions A, B, and C can be distinguished in Fig. 2
such that the conditions

1D < eg < oy | D <ep<cg IDI>0y >0
are satisfied in the respective regions.

Regions A and B correspond to a mode of flow where a shock wave ahead of the discontinuity is pos-
sible —~ "burning," and in C the shock wave coincides with the discontinuity — "detonation.” In region C, the
shock wave coincides with b'ab and travels along uncompressed material, i.e., py=0, x=1, and |D] =max [D].
Consequently, only a single point with maximum detonation velocity is realized in the entire region C — the
point .

The equation system (1}, rewritten in cylindrical coordinates, is solved numerically. For the assign-
ment of initial distributions by means of conditions (2)-(4), the material is taken to be graphite. The initial
density py=2.3 g/cm? and the dimension ab=0.015 cm [8].

At zero time, the transverse velocity u=0 and the longitudinal velocity v=const. The initial distribu-
tion of p was chosen in the form of linear functions of r and z in the region abde.

Starting fromz = 0,the pressure falls for all r. It is constant along r for 0 =r=r;=r} and decreases
linearly for ry=<r=rp. Such a distribution is necessary in order to start the calculation. The initial density
is given in Eq. (2) for fixed initial temperature T~ 10* °K and the already known pressure. The exact as-
signment plays no great part because the first ionization potential of graphite, up to the temperature of which
the calculation is carried out, is sufficiently high (1.2-10° °K) and the magnitude of the flare temperature
will be an order of magnitude greater than T, before the beginning of intense ionization.
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Iaser radiation is incident on the solid surface of the graphite [8]; one can therefore assume thatthere
is no line absorption for the temperatures T under consideration (To=T =<8-10? °K) and the absorption coef-
ficient K is given by the Kramers-Unsold formula

K = 0.96-10~"NZ2T-247% exp (4 — 4,)

where N is the number of atoms, Z is the atomic number, T is the temperature, Ay =I/kT, I is the ionization
potential, k is the Boltzmann constant, A=hy/kT, and lw is the quantum energy [10]. The effects of ioniza-
tion nonequilibrium [11) are not taken into account in this case.

An implicit difference scheme was used in the calculations in which the time derivatives 5f/ot were re-
placed by the difference @*1—f1) /At and the derivatives with respect to coordinates 9f/gy were replaced by
(fI?-ET ﬁ%’_’_’%)/sz. An iteration method was used in the solution.
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Such a scheme is little different from the "conversion" scheme used in [12]. Its stability was evalu-
ated by the Neumann method. For this, all gas-dynamic quantities fj(y, t) were represented in the form
£+ (v, t), where f;=const and £ (7, t) is a variation which is considered a small quantity of first order [13].
Then the difference scheme for f;' (v, t) reduces to the form Gf ™ (y)=f™, where G is a transformation ma-
trix. For stability, it is necessary that the eigenvalues A of the transformation matrix Gall be greater thanl.
We have

M=t 4 ivAt/ Aysin nAy > 1

where, for simplicity, we assume Az=Ar=Ay. To obtain Ay, A3, and Ay, we use the smallness of the quan-
tity I=vAt/Ay, which is no more than 1072 in this problem and neglect terms of order /2. Then

At
hg=1+ilsinnAy>1, 7»421—|—u—r*(1+%)+ilsinnAy—5

where u is the velocity in the direction r, r= Ay. The quantity 6 is proportional to gat and arises because
of heating of the gas by radiation. It is negative for

pFAy Zexp (— Hpm/om -+ imndy) > 1
m
where the summation is carried out over points along the z axis at some r; H~ 1072, F ~200. For q=10°
W/cm?, p~5-107% ppy/pm~ 1073, and the stability condition is satisfied.

For small 4, the quantity A is small because g appears in it as a multiplying factor., Thus the eigen-
values of the inverse of the transformation matrix are greater than one and the scheme is stable.

Results of the calculations are shown in Figs. 3-10. In solving the boundary equations (2)-{#), it was
observed that for a change in g from qy,;,=2"10" W/cm? to 2-10° W/em? (in dimensionless units, from 0.2
to 20), the dimensionless velocity vy varied from 0.2881 to 0.2786, i.e., practically remained constant. There
was also practically no time dependence for vy for variation of q within the limits mentioned and times of
the order of 1078 sec. This made it possible to limit examples of the time dependence of v to q=5-108 W/
cm?® only (curve 1 in Fig. 3 refers to the time t=4 nsec, curve 2 to the time t=8nsec).

The boundary values p; and p are practically proportional to the quantity g and in Figs, 4 and 5, curves
are given which for convenience use the same scaling of the quantities p and p (p and p are multiplied by the
ratio of the minimum g considered, dmine tO the g corresponding to a given p or p), i.e., = (qmin/Q)P, Py =
(qmin/Q)P- The curves 1 correspond fo q=5, t=4 nsec, the curves 2 to q=5, t=8 nsec, and the curves 3 to
q=10, t=4 nsec; the dashed line indicates the initial pressure distribution. The drop in the values of p and
p at the point z=0 is somewhat artificial and results from a decrease in radiation flux density at the bound-
ary with the solid because of an increase of radiation absorption in the flare with time,

Figure 6 shows the flare temperature distribution along z for r=0 and q=10° W/cm? 4 nsec after the
beginning of radiation effects. Curve 1 was obtained for 10 initial points along z, and curve 2 for 16 points.
The other parameters remained unchanged. Rapid heating of the leading edge of the flare ig obgerved—a
"spike" — which leads to the appearance of shock waves. The dashed line shows the temperature for super-
position of the leading edges in these two cases. Figures 7 and 8 show the pressure distribution and lateral
veloecity u along the coordinate r. The dashed line indicates the initial pressure, the initial velocity u is
zero, and the parameters q and t are the same as in Figs. 4 and 5. Figure 9 shows the variation in temper-
ature of the leading edge of the flare as a function of time for q=3.6+10° W/cm?.

The variation of the parameter (—x) (solid lines) and of the quantity j=n (dashed lines) from Eq. (),
which is now calculated from vy, py, py, and D, is shown in Fig. 10 for three values of q (L1 ~gq=2, 2— g=10,
3= g=20). The quantity j decreases with time which leads to subsonic outflow from the discontinuity for an
initial motion (t=0) close to sonic (|D|« v, and their difference at t=0 equals the velocity of sound). An in-
crease in x leads to a change in boundary values in accordance with the diagram in Fig. 2.

Viscosity was not included in the calculational scheme; therefore it was adjusted to produce smooth
solutions only and the calculations were carried forward to the time of appearance of shock wavesg, which
depended on the value of the initial temperature T;. Their formation resulted from the spike and from the
lack of equilbrium observed during the caleulation in the distribution of radiation flux density along the co-
ordinate r at the boundary of the solid.
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1t should be noted that the appearance of shock waves, nonequilibrium conditions, and other phenomena

which accompany the absorption of intense radiation greatly complicate the investigation of the problem. It
therefore appears reasonable to solve the problem of prolonged ejection by an approximation of the absorp-
tion coefficient with the power function which is valid for multiple ionization. In such a formulation, one can
also take into account fast phenomena like a spike as well as nonequilibrium conditions of processes associ-
ated with radiation absorption, and compare the results obtained with self-similarity solutions [6, 14, 15]
and with numerical solutions [16].
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